

 AI TESTING

 Department of Software Engineering

 Term Project

 Student: Merve AYDIN

 Project Adviser : Assoc. Prof. Dr. Vahide Bulut

 January 2024

 YAPAY ZEKA İLE TEST

Öz

Yapay zeka (AI), yazılım test süreçlerinde önemli bir rol oynamaktadır. Bu

proje, geleneksel test stratejilerine kıyasla daha akıllı, etkili ve ölçeklenebilir test

yöntemlerinin geliştirilmesine odaklanmaktadır. AI tabanlı test stratejileri,

otomatik test araçları ve makine öğrenimi algoritmalarını içermektedir.

Bu bölümde, temel olarak test otomasyonu ve yapay zeka arasındaki bağlantıyı

ele alacağız. Yapay zeka tekniklerinin test süreçlerine olan etkisi ve bu etkinin

nasıl optimize edilebileceği üzerine odaklanacağız.

Proje kapsamında gerçekleştirilen AI tabanlı testlerin sonuçları analiz edilecek

ve elde edilen bulgular, önceki çalışmalarla karşılaştırılacaktır. Bu bölümde elde

edilen değerli veriler, projenin katkılarını vurgulayacaktır.

Bu proje, geleneksel test stratejilerinin ötesine geçerek, yazılım test süreçlerine

daha akıllı ve dinamik bir yaklaşım getirmeyi amaçlamaktadır. Yapılan bu

çalışma, gelecekteki yazılım test mühendislerine rehberlik etmek ve endüstrideki

en iyi uygulamalara katkıda bulunmak için tasarlanmıştır.

Anahtar Kelimeler: Yapay Zeka, Test, Mühendislik, Test süreçleri, Makine

Öğrenmesi, Derin Öğrenme

ii

 AI TESTING

 Abstract

Artificial Intelligence (AI) plays an important role in software testing processes.

This project focuses on the development of more intelligent, effective and

scalable testing methods compared to traditional testing strategies. AI-based

testing strategies include automated testing tools and machine learning

algorithms.

In this section, we will mainly discuss the connection between test automation

and artificial intelligence. We will focus on the impact of AI techniques on

testing processes and how this impact can be optimized.

The results of the AI-based tests performed within the scope of the project will

be analyzed and the findings will be compared with previous studies. The

valuable data obtained in this section will highlight the contributions of the

project.

This project aims to go beyond traditional testing strategies and bring a more

intelligent and dynamic approach to software testing processes. This work is

designed to guide future software test engineers and contribute to industry best

practices.

Keywords: Artificial Intelligence, Testing, Engineering, Testing

processes,Machine Learning,Deep Learning

iii

 Dedication

I dedicate this thesis to my sibling,Beyza, whose constant encouragement and

love have been my source of strength...

iv

Acknowledgement

To all those who contributed to the success achieved in the completion of this

project, I dedicate these lines.

To my sibling: Throughout this process, you have always supported me and

stood by my side. You have been a source of morale and motivation. This

success would not have been possible without you. I am grateful to you.

To my advisor: I thank my advisor for their guidance, suggestions, and support

in my project. Their wisdom and guidance played a significant role in enhancing

the quality of the project.

To School and Department Authorities: I thank the school and department

authorities. The opportunities and support you provided were instrumental in the

successful completion of the project.

To Everyone who Provided Support: I thank everyone who supported and shared

their ideas and suggestions during this process. Your contributions significantly

enriched the project.

 This work was realized with your support and contributions. I thank each and

 every one of you individually.

v

Table of Contents

Öz .. i

Abstract ... ii

Dedication .. iii

Acknowledgement .. iv

Chapter 1 ... 1

1.1 Introduction to AI ... 1

1.2 AI definition and AI impact ... 2

1.3 Narrow, General and Super AI ... 3

1.4 AI-Based and Traditional Systems ... 3

1.5 AI Technologies ... 4

1.6 AI Development Frameworks .. 5

1.7 Hardware for Artificial Intelligence-Based Systems .. 6

1.8 AI as a Service (AIaaS) ... 7

Chapter 2 ... 9

2.1 Software Automation Testing and Artificial Intelligence Integration 9

2.2 Increased Speed and Efficiency ... 9

2.3 Automatic Test Scenarios with AI ... 9

2.4 Identification of Weak Points and Improvement Suggestions 9

2.5 Cost Savings ... 10

2.6 Error Analysis and Discovery .. 10

2.7 Performance and Load Testing ... 10

2.8 Learning for Future Scenarios .. 10

vi

Chapter 3 .. 11

3.1 AI models used in software test automation... 11

3.1.1 Machine Learning Models .. 11

3.1.2 Deep Learning Models ... 11

3.1.3 Genetic Algorithms... 12

3.1.4 Natural Language Processing (NLP) .. 12

3.1.5 Clustering Algorithms .. 12

3.1.6 Autonomous Test Scenario Generation .. 12

Chapter 4 .. 13

4.1 AI models used in software test automation... 13

4.2 Determination of Test Needs .. 13

4.3 Creation of Test Scenarios.. 13

4.4. Creation of the Test Plan ... 13

4.5 Preparation of the Test Environment .. 14

4.6 Execution of Test Scenarios ... 14

4.7 Evaluation of Test Results .. 14

4.8 Reporting and Monitoring .. 14

Chapter 5 .. 15

5.1 Traditional Software Automation Testing Models ... 15

5.1.1 Waterfall Model .. 15

5.1.2 V-Model .. 15

5.1.3 Iterative Model .. 15

5.1.4 Dual Vee Model (Inverted V-Model) .. 15

5.1.5 Agile Model .. 16

 5.1.6 Spiral Model... 16

Chapter 6 .. 17

6.1 Test levels on AI Based System ... 17

vii

6.2 Input Data Testing ... 17

6.3 ML Model Testing .. 18

6.4 Component Testing .. 18

6.5 Component Integration Testing .. 18

6.6 System Testing ... 19

6.7 Acceptance Testing .. 19

Chapter 7 .. 20

7.1 Comparison of AI and traditional models on positive aspects 20

7.1.1 Traditional Model ... 20

7.1.2 Comparison with Artificial Intelligence (AI) Model 20

7.1.3 Conclusion .. 21

Chapter 8 .. 22

8.1 Comparison of AI and traditional models on negative aspects 22

8.1.1 Traditional Model ... 22

8.1.2 AI Model ... 22

Chapter 9 .. 24

9.1 The impact of AI on test automation in the future ... 24

References ... 25

1

Chapter 1

1.1 Introduction to AI

The rapid evolution in software development processes has prompted software

test engineers to question traditional testing methods and seek more effective

solutions. In this context, attention is drawn to the innovations brought by

Artificial Intelligence (AI) to test processes. AI testing offers a more intelligent,

dynamic, and scalable approach for software test engineers, carrying the

potential to enhance software quality and identify errors more effectively.

Traditional test strategies often follow predefined scenarios and manually

oversee a broad test scope. However, the complexity and fast-paced nature of

software development processes, which these methods may not adequately

address, highlight the prominence of AI-based test strategies. Through its

learning capabilities, analytical skills, and adaptability, Artificial Intelligence

optimizes test processes and identifies errors through previously undiscovered

paths.

AI testing utilizes techniques such as machine learning and data analytics to

interpret large amounts of data, recognize patterns, and offer the potential to

improve test processes. This approach not only automates test processes but also

provides flexibility to continuously update test strategies.

2

This article will thoroughly examine the concept of AI testing, addressing the

advantages, current state, application examples, and future potentials of AI-

based test strategies. AI testing aims to bring a new perspective to software test

processes, surpassing traditional limitations and aiming to elevate software

quality. Exploring the potential impact of this technology on future software

development processes is an inevitable necessity in today's dynamic software

world.

1.2 AI definition and AI impact

The term Artificial Intelligence (AI) has undergone continuous evolution since

the 1950s, originally emerging with the goal of constructing and programming

"intelligent" machines. However, in today's context, the definition of Artificial

Intelligence has significantly broadened, focusing on the capability of

engineering systems to acquire, process, and apply knowledge and skills. This

concept now encompasses not only the imitation of humans but also the ability

to solve complex problems and learn.

The way people understand Artificial Intelligence has evolved in accordance

with technological advancements over time. For instance, in the 1970s, the

language processing capabilities of computer systems hinted at the possibility

that machines could develop human-like language understanding skills in the

future. However, in contemporary times, this has evolved beyond surface-level

language processing to a more sophisticated understanding that delves into deep

meanings.

As the perception of what qualifies as Artificial Intelligence changes, a

phenomenon known as the "AI Effect" emerges. As societal perceptions of AI

evolve, so does the definition of Artificial Intelligence. This allows for a better

understanding of the impact of technology on human life.

3

 Consequently, predicting how any current definition may evolve over time with

technological progress and changing societal expectations is challenging, but it

is evident that such evolution is inevitable.

1.3 Narrow, General and Super AI

At a high level, artificial intelligence can be classified into three main categories:

Narrow Artificial Intelligence (also known as weak AI) refers to systems

specifically programmed to perform a particular task within a limited context.

Such AI systems are widely used in various fields today, including gaming

systems, unwanted email filters, test scenario generators, and voice assistants.

General Artificial Intelligence (also known as strong AI) represents systems with

general cognitive abilities similar to humans. These AI-based systems can

comprehend their surroundings like humans and act accordingly. However, as of

2021, fully realized general artificial intelligence systems have not been

developed.

Super Artificial Intelligence systems are defined as those capable of mimicking

human cognition and leveraging extensive processing power, almost unlimited

memory, and access to all human knowledge (e.g., through web access). It is

believed that super AI systems will rapidly surpass human intelligence over time.

The point where AI-based systems transition from general AI to super AI is

commonly referred to as the "technological singularity."

1.4 AI-Based and Traditional Systems

In a traditional computer system, software is typically programmed using an

imperative language, incorporating structures like conditional statements and

loops. Understanding how inputs are transformed into outputs by the system is

usually straightforward for humans. In an AI-based system, however, the system

typically analyzes patterns in data using machine learning and determines how

it will respond to future data. For example, an AI-based image processor

designed to recognize cat images is trained with a set of images containing cats.

4

The AI independently identifies patterns or features that can be used to recognize

cats. These patterns and rules are then applied to new images to identify

contained cats. In many AI-based systems, this process can lead to predictions

that are less understandable by humans.

In practice, AI-based systems can be implemented with various technologies,

and the "AI Effect" is effective in determining which systems are currently

considered AI-based and which ones are considered traditional systems.

1.5 AI Technologies

AI can be implemented using a wide range of technologies. Among these AI can

be implemented using a wide range of technologies, such as:

 • Fuzzy logic

• Search algorithms

• Reasoning techniques

- Rule engines

- Deductive classifiers

- Case-based reasoning

 - Procedural reasoning

• Machine learning techniques

- Neural networks

 - Bayesian models

- Decision trees

- Random forest

- Linear regression

5

- Logistic regression

- Clustering algorithms

 - Genetic algorithms

 - Support vector machine (SVM)

 AI-based systems typically implement one or more of these technologies.

1.6 AI Development Frameworks

There are numerous artificial intelligence development frameworks available,

and some of them are tailored to specific domains. These frameworks support a

variety of activities, including data preparation, algorithm selection, and the

deployment of models onto various processors. Processors may include central

processing units (CPUs), graphics processing units (GPUs), or Cloud Tensor

Processing Units (TPUs), among others. The choice of a framework depends on

factors such as the programming language used and ease of use. Here are some

of the popular frameworks as of April 2021:

• Apache MxNet: An open-source deep learning framework used for Amazon

Web Services (AWS).

• CNTK: Microsoft Cognitive Toolkit (CNTK), an open-source deep learning

tool.

• IBM Watson Studio: A suite of tools supporting the development of AI

solutions.

• Keras: A high-level open-source API written in Python, compatible with

TensorFlow and CNTK.

• PyTorch: An open-source machine learning library operated by Facebook, used

for image processing and natural language processing (NLP) applications.

It provides support for both Python and C++ interfaces.

6

• Scikit-learn: An open-source machine learning library for the Python

programming language.

• TensorFlow: An open-source machine learning framework provided by

Google, based on data flow graphs for scalable machine learning.

These development frameworks are continually evolving, sometimes merging,

and occasionally being replaced by new frameworks.

1.7 ardware for Artificial Intelligence-Based Systems

Various types of hardware are employed for the training and deployment of

machine learning models. For instance, a model performing speech recognition

can operate on a low-capacity smartphone but might require access to cloud

computing power for training. In cases where the main device is not connected

to the internet, a common approach is to train the model in the cloud and then

deploy it to the main device.

Hardware supporting machine learning often benefits from the following

features:

• Low-precision arithmetic: This involves using fewer bits for computations

(e.g., using 8 bits instead of the typical 32 bits for machine learning).

• Capability to work with large data structures, such as supporting matrix

multiplication.

• Massive parallel (concurrent) processing ability.

General-purpose CPUs typically support complex operations not often needed

in machine learning applications and provide only a few cores. Consequently,

their architectures are generally less efficient for training and running machine

learning models compared to CPUs with faster clock speeds. As a result, GPUs

are often the preferred choice for small-scale machine learning projects.

Some hardware is specifically designed for Artificial Intelligence, including

purpose-built Application-Specific Integrated Circuits (ASICs) and System on a

Chip (SoC) solutions. These AI-specific solutions come with features like

7

multiple cores, custom data management, and in-memory processing

capabilities. Often, these solutions are most suitable for edge computing while

the training of machine learning models is performed in the cloud.

Hardware with specific AI architectures is currently being developed (as of April

2021). This includes neuromorphic processors that mimic brain neurons but do

not follow the traditional von Neumann architecture.

Examples of AI hardware providers and processors include (as of April 2021):

• NVIDIA: Offering GPUs like Volta and specialized processors for AI.

• Google: Developing application-specific integrated circuits for training and

inference. Google TPUs (Cloud Tensor Processing Units) are accessible to

users through Google Cloud, while Edge TPU is a purpose-built ASIC

designed to run AI on individual devices.

• Intel: Providing Nervana neural network processors for deep learning and

Movidius Myriad image processing units for computer vision and neural

network applications.

• Mobileye: Producing the EyeQ SoC device family to support complex and

computation-intensive image processing tasks, with low power consumption

for use in vehicles.

• Apple: Producing the Bionic chip designed for AI on iPhones.

• Huawei: Having the Kirin 970 chip for smartphones, featuring built-in neural

network processing capabilities for AI.

 1.8 AI as a Service (AIaaS)

• AI components, such as ML models, can be created within an organization,

downloaded from a third party, or used as a service on the web (AIaaS). A

hybrid approach is also possible in which some of the AI functionality is

provided from within the system and some is provided as a service. When ML

is used as a service, access is provided to an ML model over the web and

support can also be provided for data preparation and storage, model training,

evaluation, tuning, testing, and deployment. Third-party providers (e.g., AWS,

Microsoft) offer specific AI services, such as facial and speech recognition.

8

This allows individuals and organizations to implement AI using cloud-based

services even when they have insufficient resources and expertise to build their

own AI services. In addition, ML models provided as part of a third-party

service are likely to have been trained on a larger, more diverse training dataset

than is readily available to many stakeholders, such as those who have recently

moved into the AI market.

9

Chapter 2

2.1 Software Automation Testing and Artificial

Intelligence Integration

In software development processes, effective management and optimization of

testing stages are continually researched by industry players with the aim of

enhancing product quality and achieving time and cost savings. At this point,

we can delve into how the integration of software automation testing and

artificial intelligence (AI) contributes to these objectives in more detail.

2.2 Increased Speed and Efficiency

Software automation testing provides a faster and more repeatable testing

environment compared to manual testing processes. This ensures quicker

completion of testing stages in the software development process, leading to the

efficient execution of processes.

2.3 Automatic Test Scenarios with AI

Artificial intelligence enables the more effective creation of automatic test

scenarios by understanding the structure of the application and user behaviors.

AI algorithms can optimize test scenarios by comprehending interactions

between different components of the application.

2.4 Identification of Weak Points and Improvement

Suggestions

AI can identify weak points in the testing processes and provide improvement

suggestions. This accelerates the continuous improvement process, aiding in the

prevention of future errors.

10

2.5 Cost Savings

Software automation testing and AI contribute to cost savings when compared

to manual testing processes. The rapid creation and implementation of automatic

test scenarios reduce development costs and save time.

2.6 Error Analysis and Discovery

AI enhances the error analysis process by thoroughly analyzing test results. This

facilitates faster detection of errors and provides developers with more effective

guidance for error correction.

2.7 Performance and Load Testing

AI can optimize performance and load testing by automatically generating

complex scenarios. This results in a more comprehensive testing strategy to

determine how the application performs under real-world conditions.

2.8 Learning for Future Scenarios:

AI, with its ability to learn from data obtained during test processes, allows for

better planning and implementation of future test scenarios. This enables the

continuous development of a dynamic test strategy.

In conclusion, the integration of software automation testing and artificial

intelligence has the potential to make testing stages in software development

more effective, faster, and cost-efficient. This integration represents a significant

step for the software industry to increase its competitive advantage and deliver

high-quality products.

11

Chapter 3

3.1 AI models used in software test automation

3.1.1 Machine Learning Models

-Linear Regression: This model is used to model the relationship between a

dependent variable and one or more independent variables. For example, it can

be used to predict factors influencing the performance of an application.

-Decision Trees: Decision trees are used in classification and regression tasks.

For instance, decision trees can be employed to assess the security status of an

application.

-Support Vector Machines (SVM): SVM is used in classification and regression

tasks. For example, it can be applied to evaluate the user experience of an

application.

3.1.2 Deep Learning Models

-Artificial Neural Networks (ANN): ANN is used for understanding complex

structured data. For instance, it can be utilized to analyze user interactions in an

application and detect errors.

-Convolutional Neural Networks (CNN): CNN is employed in image processing

and recognition tasks. For example, it can be used to test the accuracy of graphic

elements in the user interface of an application.

-Recurrent Neural Networks (RNN): RNN is used for working with time series

and sequential data. For instance, it can be utilized to monitor and understand

the performance of an application over time.

12

3.1.3 Genetic Algorithms

Genetic algorithms are used to evolve test scenarios to achieve optimal

performance. For example, genetic algorithms can be applied to generate the

most effective test scenarios based on specific usage scenarios of an application.

3.1.4 Natural Language Processing (NLP)

NLP is used to analyze test documents, reports, and error logs to detect issues

and perform error analysis. For example, NLP can be employed to identify

common problems through error reports of an application.

3.1.5 Clustering Algorithms

Clustering algorithms are used to group test scenarios with similar characteristics

and analyze these groups. For instance, clustering algorithms can be applied to

group similar errors in different modules of an application.

3.1.6 Autonomous Test Scenario Generation

Artificial intelligence can autonomously generate test scenarios by

understanding the dynamic structure of an application and modeling user

behaviors. For example, it can automatically record user interactions and create

test scenarios based on them.

13

Chapter 4

4.1 Traditional Software Automation Testing

Traditional software automation testing is an activity that is usually conducted

within a specific process and model. Here is an overview describing the

traditional software automation testing process and some of the models used:

4.2 Determination of Test Needs

At the beginning of the software development process, business requirements,

user scenarios, and software design documentation are thoroughly reviewed. At

this stage, the testing team understands the goals of the software and identifies

the features that need to be tested.

4.3 Creation of Test Scenarios

Test scenarios are created based on the identified test needs. These scenarios

include steps that cover different components and features of the software.

Scenarios can be written manually by the testing team or in a test scenario

language suitable for automation.

4.4 Creation of the Test Plan

A general test plan is created based on the test scenarios. This plan includes the

management of the test process, test stages, test tools to be used, the test

environment, test processes, and responsibilities. Additionally, the sequencing

and prioritization of test stages are determined at this stage.

14

4.5 Preparation of the Test Environment

An appropriate test environment is prepared to successfully execute the test

scenarios. This environment may include different configurations, platforms,

and databases of the software. If necessary, test data is prepared and loaded at

this stage.

4.6 Execution of Test Scenarios

The prepared test scenarios are executed according to the established test plan.

At this stage, it is ensured that the test scenarios run successfully and produce

the expected results. The test process is typically organized to cover different

modules or components of the software.

4.7 Evaluation of Test Results

The results obtained after the execution of test scenarios are thoroughly

evaluated. Errors, deficiencies, and performance issues are identified. Relevant

teams are informed about these errors, and corrective actions are taken.

4.8 Reporting and Monitoring

Test results are shared by creating a test report. This report includes the

achievements, errors, and improvement suggestions of the test process. If

necessary, the test process is updated, and lessons are learned for future test

activities.

This process is crucial for achieving the goals set in the software development

process and enhancing the quality of the software. Additionally, based on a

specific software development model (such as the Waterfall model or V-model),

these processes can be applied in a more specific manner.

15

Chapter 5

5.1 Traditional Software Automation Testing Models

5.1.1 Waterfall Model

• The Waterfall model addresses the software development process in a

sequential and phased manner. Each stage builds upon the previous one, and a

phase must be completed before moving on to the next.

• Testing stages typically come towards the end of the software development

process. During this stage, numerous test scenarios are planned and executed.

5.1.2 V-Model

• The V-Model aligns each development stage with a corresponding testing

stage. After each development step, a testing stage is executed.

• In this model, testing stages wait for the completion of development steps.

Relevant testing stages are used to verify the accuracy of development steps

and to detect errors early.

5.1.3 Iterative Model

• In the Iterative model, the software development process is divided into small

and repeatable iterations. Each iteration is developed based on the previous

one.

• Testing stages are applied at the end of each iteration. This allows the

confirmation of changes made in each iteration and the early detection of

errors.

5.1.4 Dual Vee Model (Inverted V-Model)

• In this model, a structure similar to the V-Model is used, but testing stages

occur before development steps.

16

• This allows for the early detection and resolution of errors, enabling a more

reliable and rapid development process.

5.1.5 Agile Model

• The Agile model embraces a flexible and continuous software development

process. Small, independent, and frequent deliveries are made.

• In the Agile model, testing occurs in every iteration of the software and is

frequently performed. Continuous integration and automation testing play a

significant role in the Agile model.

5.1.6 Spiral Model

• The Spiral model involves repeating the software development process in

cycles (spiral). Each spiral has a stage.

• In each cycle, a stage begins with risk analysis and prototyping. Testing stages

are applied at the end of each cycle.

These models represent different approaches in traditional software development

and testing processes. Each model has its advantages and disadvantages, and the

choice of which model to use depends on the project's characteristics and

requirements.

17

Chapter 6

6.1 Test levels on AI Based system

AI-based systems typically encompass both components involving artificial

intelligence and those without it. While conventional approaches can be used to

test components without AI, those with AI components and systems containing

them should undergo a distinct testing process for various reasons outlined

below. For all test levels involving AI components, close support from data

engineers/scientists and domain experts is crucial.

A notable difference from the test levels used for traditional software lies in the

inclusion of two new specialized test levels explicitly addressing the testing of

input data and the models used in AI-based systems. This section is largely

applicable to all AI-based systems, with some parts specifically focusing on

machine learning (ML).

6.2 Input Data Testing

The main objective of input data testing is to ensure that the data used by the

system for training and prediction is of the highest quality. It includes the

following:

Reviews

- Statistical techniques (e.g., testing data for bias)

-Exploratory Data Analysis (EDA) of the training data

-Static and dynamic testing of the data pipeline

The data pipeline typically consists of several components performing data

preparation tasks. The testing of these components involves both component

testing and integration testing. The data pipeline used for training may differ

significantly from the fully engineered, automated version used for operational

predictions.

18

Therefore, it is crucial to test both versions of the data pipeline. However, testing

the functional equivalence of these two versions should also be considered.

6.3 ML Model Testing

The primary objective of ML model testing is to ensure the existence of the

selected model meeting the specified performance criteria. This includes the

following: • ML functional performance criteria • ML non-functional acceptance

criteria appropriate for the ML model in isolation, such as training speed,

prediction speed, utilized computational resources, adaptability, and

transparency.

ML model testing also aims to determine that the ML framework, algorithm,

model, model settings, and hyperparameters are chosen as optimally as possible.

If applicable, ML model testing may also encompass testing to meet white-box

coverage criteria. The selected model is subsequently integrated with other

components, both AI and non-AI.

6.4 Component Testing

It is a conventional test level that can be applied to any non-model components,

such as user interfaces and communication components.

6.5 Component Integration Testing

It is a traditional test level conducted to validate the interaction of system

components (both containing AI and non-AI elements). This test verifies

whether inputs from the data pipeline are received as expected by the model and

ensures that predictions generated by the model are accurately received and

utilized by relevant system components, such as the user interface. When AI is

offered as a service, API testing of the provided service is commonly performed

as part of Component Integration Testing.

19

6.6 System Testing

System testing is a traditional testing level conducted to verify whether

integrated components (both AI and non-AI) perform as expected as a whole.

This test is carried out in a test environment closely representative of the

operational environment, considering both functional and non-functional

aspects. System testing may involve field trials or test scenarios to evaluate the

system's operation, especially in situations that are hazardous or challenging to

replicate in the operational environment. During system testing, the ML

functional performance criteria are re-evaluated to ensure that the initial results

from ML model testing are not adversely affected when the model is fully

integrated into the system. This testing is particularly important if intentional

changes have been made to the AI component (e.g., compressing a DNN to

reduce its size). System testing is also a test level used to evaluate a variety of

non-functional requirements for the system. For example, adversarial tests may

be conducted for reliability, and the system can be tested for explainability. If

applicable, interfaces with hardware components (e.g., sensors) may also be

tested as part of system testing.

6.7 Acceptance Testing

Acceptance Testing is a conventional test level conducted to determine whether

a completed system is acceptable to the customer. Defining acceptance criteria

for AI-based systems can be challenging. If AI is provided as a service,

acceptance testing may be required to assess the suitability of the service for the

intended system and whether, for example, ML functional performance criteria

have been adequately met.

20

Chapter 7

7.1 Comparison of AI and traditional models on

positive aspects

7.1.1 Traditional Model

Ease of Setup: Traditional test models are generally easy to set up and rely on

previously used testing tools. Therefore, they may require less effort to get

started.

Focus on Specific Scenarios: Traditional models focus on executing test

scenarios designed and optimized for specific situations. They usually

concentrate on a particular expected behavior.

Combination of Manual and Automated Testing: Traditional approaches can

combine manual and automated testing processes. This provides flexibility,

especially when dealing with user interface tests and handling special cases.

7.1.2 Comparison with Artificial Intelligence (AI) Model

Efficiency and Speed: Artificial intelligence can create test scenarios faster and

more effectively by analyzing large datasets. It can enhance efficiency,

especially in large and complex software systems.

Learning Capability: AI models have the ability to learn from data over time.

This provides valuable insights for understanding the complexity of software and

improving future test scenarios.

Automatic Bug Discovery: AI can often automatically detect errors during

testing. Its data analysis and pattern recognition capabilities allow it to find errors

faster and more effectively than traditional methods.

21

Coverage of Diverse Test Scenarios: AI may have a broader test coverage

compared to traditional models. It can go beyond specific user scenarios and

address unexpected situations.

Self-Adaptability: AI can adapt to changes in software and automatically update

test scenarios. This is a significant advantage in continuous integration and

continuous delivery (CI/CD) processes.

Natural Language Processing (NLP): AI, through its NLP capabilities, can

analyze test documents, reports, and error logs. This aids in quickly detecting

and analyzing errors.

7.1.3 Conclusion

The choice between traditional and AI-based test models should be made based

on the project's needs and requirements. Both approaches have their advantages

and strengths, and the one most suitable for the project's requirements is selected.

For example, if dealing with large datasets, complex user behaviors, and fast

delivery requirements, AI-based test models might be more appealing.

22

Chapter 8

8.1 Comparison of AI and traditional models on

negative aspects

8.1.1 Traditional Model

Flexibility and Adaptation Challenges: Traditional test models often face

challenges in quickly adapting to changing software requirements. Flexibility

shortcomings are particularly evident in projects with significant changes.

Manual Workload: Manual test processes still hold a significant place in

traditional models. This situation can result in time and effort requirements for

repetitive manual testing processes.

Challenges in Comprehensive Data Analysis: Working with large datasets and

conducting complex data analyses can be more challenging for traditional

models. This situation can adversely affect comprehensive error analysis and

discovery processes.

Lack of Speed and Efficiency: Traditional models generally require longer test

processes. This can be limiting for projects requiring rapid delivery or

continuous integration processes.

8.1.2 AI Model:

Training and Algorithmic Complexity: AI-based test models may involve

complex algorithms and training processes. This complexity may require

expertise to use these models effectively.

Need for Accurate Training Data: AI models require accurate and representative

training data. If training data is missing or incorrect, it can negatively impact the

model's performance.

23

Cost: AI-based test processes can be more expensive due to training,

development, and maintenance costs. This can pose a challenge for small-scale

projects or organizations with limited budgets.

Ethical and Moral Issues: The use of AI can raise ethical and moral concerns,

including the selection of accurate training data, prevention of biases, and

interpretation of results.

Complexity: AI models tend to be complex, making them less understandable

for users or test teams. Additional effort may be required to obtain simplified

and understandable results.

24

Chapter 9

9.1 The impact of AI on test automation in the future

Utilizing artificial intelligence and machine learning is crucial for effective

automation. Automating testing processes can provide a faster, more

economical, and efficient alternative compared to traditional methods. Allowing

AI to handle the scenario-writing process for quality engineers enables the

creation of more optimized and robust test scenarios.

According to experts, in the future, many systems and applications will be tested

by AI and ML, with the API world playing a pioneering role in this

transformation. This shift is expected to facilitate the easier and more effective

execution of API tests.

In the manual testing domain, some organizations are still hesitant about

embracing AI due to the belief that humans still surpass machines in creativity,

exploration, and analytical capabilities. Therefore, while manual tests continue

in specific areas, the likelihood of increased implementation of artificial

intelligence applications in other areas is high.

In the field of test automation, the establishment of AI-based systems allows

organizations to conduct more tests at a lower cost. The resources saved can be

redirected towards exploratory testing, contributing to investments in QA

innovations. This creates an opportunity for testers to focus on more interesting

and valuable tasks, ultimately enhancing software quality.

With the emergence of AI, there is a belief that testers need not worry about the

obsolescence of their roles but should instead consider a different perspective on

the future of testing. Striking a balance between humans and machines will make

test processes more efficient and contribute to the development of high-quality

products. Collaboration with artificial intelligence in the testing world is deemed

key to success, and testers stand to be among the winners when this collaboration

is effectively leveraged.

25

References

Graham, D., & Van Veenendaal, E. (2007). "Foundations of Software Testing."

Li, K. (2004). "Effective Software Test Automation."

Arbon, J., & Carollo, J. (2021). "AI for Software Testing."

Graham, D., & Fewster, M. (2005). "Experiences of Test Automation: Case Studies of

Software Test Automation."

ISTQB Certified Tester AI Testing (CT-AI) Syllabus Version 1.0.

Testeryou - Test Dünyasında Yapay Zekanın Yeri https://testeryou.com/tr/test-

dunyasinda-yapay-zekanin-yeri/

26

